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Abstract 

Background:  With the dynamic development of professional Paralympic sport, the prevalence of musculoskeletal 
pain and structural and/or functional disturbances in Para athletes constantly increases. The aim of the study was to 
evaluate the impact of internal compensatory mechanisms on selected aspects of body structure and function in elite 
sitting volleyball players.

Methods:  The study included eighteen elite sitting volleyball players (male; n = 12, female; n = 6, age; 36.0 ± 6.1, 
body mass; 76.6 ± 16.1, body height; 179.3 ± 0.1) from the Polish national team. Retrospective and direct participatory 
observation methods were used in the study. NMQ-7 was used to assess the current prevalence and location of mus-
culoskeletal pain. The evaluation of spinal curvature and pelvic inclination was performed using a non-invasive Medi 
Mouse method (Idiag M360) in three different trunk positions. All statistical analyses were performed using Statistica 
13.3 software package.

Results:  Lumbar hypolordosis was a predominant sagittal deviation of spinal curvature (n = 15;83%). Low back pain 
(LBP) and neck pain were the most frequent complaints (50%). Statistically significant differences in the values of 
thoracic kyphosis angle, pelvic inclination, and spine length (SL) in sagittal standing flexion and extension were found. 
However, there was no statistically significant difference in sagittal standing flexion for the lumbar lordosis angle with 
a simultaneous significant change in pelvic inclination (66.9°). Moreover, a tendency to interpenetration of relation-
ships between variables that characterize (a) body structure and (b) function of the spine and musculoskeletal pain 
were observed. Shoulder pain correlated with SL (R = 0.6; p < 0.05) and body height (R = 0.5; p < 0.05). Pelvic inclination 
correlated with shoulder pain, LBP (R = 0.5; p < 0.05/R = 0.6; p < 0.01), and body trunk fat mass (R = − 0.6; p < 0.05).

Conclusions:  Trunk fat mass induces internal compensatory mechanisms to maintain optimal pelvic inclination and 
sagittal spinal balance. Furthermore, the level of pelvic mobility may determine musculoskeletal pain in Para athletes 
with lower limb impairment.
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Background
Pain is known to be one of the most frequent problems 
both in Olympic and Paralympic sports [1]. To achieve 
an elite level of sports performance, avoidance and 
management of musculoskeletal pain are necessary for 
each athlete to continue training, which is believed to 
be a core aspect of sports performance [2]. Sport-spe-
cific movements modify the body build and posture of 
athletes, contributing to both structural and functional 
adaptations in the athlete’s body [3]. However, the 
adaptations are not always necessarily beneficial as they 
tend to lead to muscular imbalances and cause muscu-
loskeletal pain, which may affect both sports perfor-
mance and athlete’s quality of life [4, 5].

Human body structure and function are the two 
intrinsic and strongly connected elements [6]. There-
fore, it is difficult to indicate the primordiality of 
changes in the musculoskeletal system, especially 
in Para athletes with musculoskeletal impairments 
because of the disturbed body’s biomechanics. The 
human body always strives for balance by using com-
pensatory strategies, even if they are not fully beneficial 
[4]. Gaweł et  al. [4] indicated two crucial compensa-
tory mechanisms in Para athletes internal and external. 
The mechanism of external compensation is known as 
the body’s adaptations to sport-specific movements, 
whereas the internal mechanism is an essential com-
pensatory strategy due to a congenital or acquired 
impairment, that is interdependent mostly with bio-
mechanical factors and body composition [4]. Nev-
ertheless, both of the abovementioned mechanisms 
simultaneously disturb the intrinsic body’s biomechan-
ics e. g. by changing the pelvis inclination or disturb-
ing the fat mass distribution, leading to musculoskeletal 
pain.

The body’s structure and function are strongly related 
to the stability and mobility of muscles and joints [7, 8]. 
As the load distribution between passive and active seg-
ments of the human body in various everyday life activi-
ties is mainly determined by the spine and pelvic position 
[9], the levels of stability and mobility in spinal joints are 
crucial to avoid disturbances in body build and posture. 
This issue has significant importance in Para athletes 
with lower limb impairments as it has been reported that 
lower limb amputations and defects significantly impact 
human biomechanics [10, 11]. Another component that 
is intrinsically related to the body’s biomechanics is body 
composition i.e. fat mass and muscle mass [12]. The level, 
variability, and distribution of the abovementioned com-
ponents depend both on endogenous (neuromuscular 
or musculoskeletal disorders/impairments, intracellular 
metabolism) and exogenous (lifestyle, physical activity) 
factors [5, 13, 14]. Despite the factor that disturbs the 

body’s structure and/or function, internal compensatory 
mechanisms are activated as they intrinsically maintain 
the body’s homeostasis [4].

A study by Zwierzchowska et  al. [15] showed a rela-
tionship of the level and distribution of fat mass with 
deviations in spinal curvature. It was found that an inap-
propriate visceral fat mass affects anteroposterior spinal 
curvatures, mainly by deepening lumbar lordosis, which 
might cause low back pain (LBP) [15, 16]. Fat mass is 
usually assessed based on the body mass index (BMI). 
However it has been shown that the body adiposity index 
(BAI) is a more reliable marker, especially for people with 
disabilities, e.g. amputees [15, 17, 18].

With the dynamic development of professional Para-
lympic sport the prevalence of musculoskeletal pain and 
structural and/or functional disturbances in Para athletes 
constantly increases [4, 19]. To date, several hypotheses 
have been proposed, but this issue remains unsolved. 
Therefore, the aim of the study was to identify the impact 
of internal compensatory mechanisms onselected aspects 
of the body’s structure and function in elite sitting vol-
leyball players. It was assumed that excessive trunk fat 
mass, overweight, and low mobility of the lumbar spine 
contribute to musculoskeletal pain in Para athletes with 
lower limb impairments.

Methods
Participants
The study included eighteen elite sitting volleyball players 
(male: n = 12, female: n = 6, age: 36.0 ± 6.1, body mass: 
76.6 ± 16.1, body height: 179.3 ± 0.1, experience in sit-
ting volleyball training (years); 8.1 ± 7.6) from the Polish 
national team. The inclusion criteria were as follows: (1) 
at least a minimal disability (MD) according to the World 
ParaVolley classification, (2) at least 2 years of training at 
an elite level (3) free from neuromuscular or musculo-
skeletal disorders. Table 1 provides a detailed description 
of the study participants.

The amputee group used prostheses (n = 10) or ortho-
pedic crutches (n = 1) in the activities of daily living and 
locomotion. Only one athlete had a bilateral amputation 
above the knees and used a wheelchair in everyday life. 
The athletes from the Les Autres group used prostheses 
(n = 2), orthopedic crutches (n = 2), and no supportive 
equipment (n = 2).

The examinations started in December 2020 (pilot 
studies) [4], whereas further data were collected in March 
and November 2021 as a part of a project of monitoring 
the training process and body’s adaptations and compen-
sations in elite Polish sitting volleyball players in differ-
ent training periods. All measurements were carried out 
at the Jerzy Kukuczka Academy of Physical Education in 
Katowice, Poland. Participants were informed about the 
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advantages and disadvantages of the research and pro-
vided written informed consent. The research protocol 
was approved by the Bioethics Committee for Scientific 
Research at the Academy of Physical Education in Kato-
wice, Poland (No. 9/2012) and met the ethical standards 
of the Declaration of Helsinki, 2013. Moreover, partici-
pants were allowed to withdraw from the experiment at 
any moment. Furthermore, they were instructed to main-
tain their normal dietary and sleeping habits for 24  h 
before the examination.

Measurements
Retrospective and direct participatory observation meth-
ods were used in the study. Athletes arrived at the labo-
ratory in the morning (8–11  a.m.). The prevalence of 
musculoskeletal pain was first assessed. Next, the anthro-
pometric and spinal curvature measurements were 
performed.

The assessment of the prevalence of musculoskeletal pain
The Nordic Musculoskeletal Questionnaire from the 
last 7 days (NMQ-7) [20] was used to assess the current 
prevalence and location of musculoskeletal pain among 
sitting volleyball players, as it is known to provide use-
ful and reliable data on musculoskeletal pain. The ques-
tionnaire has been tested for (a) validity, which showed 
almost identical answers concerning the clinical history 
of the study participants (ranging from 80 to 100%), 
and (b) reliability, which showed similar results (range: 
78–100%) [20]. The NMQ-7 includes the following nine 
body parts: the neck, shoulders, upper back, elbows, 

wrists, lower back, hips/thighs, knees, and ankles/feet. 
To minimalize the subjective risk of error, the question-
naire was completed in the presence of a physiotherapist. 
Moreover, before completing the questionnaire, sitting 
volleyball players were instructed not to report phantom 
pain because of psychological factors that might contrib-
ute to this phenomenon [21].

Anthropometric measurements
To assess the body height (BH), a wall-mounted stadi-
ometer with a centimeter scale was used, including the 
wheelchair user who was able to stand for a short period 
of time without additional supporting equipment. Body 
mass (BM) was evaluated using a chair balance. The cir-
cumferences of hips (HC) and waist (WC) were assessed 
with the use of an anthropometric tape on bare skin in 
a lying position and according to the recommended 
anthropometric techniques, i.e., HC—around the greatest 
convexity of the gluteal muscles below the iliac ala, WC—
at the midpoint between the superior iliac crest and the 
lowest rib [22]. Body mass index (BMI) was calculated 
by the standard formula (body mass [kg]/body height2 
[cm]). However, as the majority of the study participants 
were characterized by a limb deficiency, a corrected BMI 
(based on the Brown-Fisher rate) was also computed. 
The proportion of total body weight assigned to different 
body segments was as follows: hand (1%), forearm (2%), 
arm (3%), head (7%), trunk (43%), thigh (12%), shank 
(5%), and foot (2%) [23]. The assessment of fat mass was 
performed with a Tanita Viscan AB-140 Abdominal Fat 
Analyzer, which is known to be a golden standard for 

Table 1  Detailed characteristics of the study participants

n—total number of participants; nF—number of females; nM—number of males; *excluded bilateral amputation (n = 1)

SD standard deviation, BMI body mass index, BAI body adiposity index

Participants’ characteristics (n = 18; nF = 6, nM = 12) Mean ± SD

Age (years) 36.0 ± 6

Body mass (kg) 76.6 ± 16.1

Body height* (m) 179.3 ± 0.1*

Hip circumference (cm) 102.7 ± 10.4

Trunk fat mass (%) 29.07 ± 9.6

Waist circumference (cm) 89.4 ± 11.9

BMI in participants with lower limb deficiency (n = 14) 23.4 ± 5.1

BMI (n = 18) 25.5 ± 3.4

BAI* (%) 24.9 ± 4.1

Duration of paralympic sport-specific training (years) 8.9 ± 7.9

Duration of disability (years) 21.9 ± 10.1

Disability classification Percentage (%)

Amputees 67

Les autres 33
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individuals who cannot stand in the upright position and 
has 95% sensitivity and reliability. The body adiposity 
index (BAI) (BAI = hip circumference[cm]/(body height 
[m]) − 18) was also computed. BAI is believed to be an 
objective marker to evaluate body adiposity in both able-
bodied and disabled populations [15, 17, 18].

Spinal curvatures measurements
The evaluation of the spinal curvatures and pelvic incli-
nation was performed based on a standard procedure 
similar to that used in the pilot study [4] using a non-
invasive Medi Mouse method (Idiag M360), by the same 
two specialists (EG, DC). Medi Mouse ensures repro-
ducibility even if two different researchers conduct the 
examinations [4]. All procedures were demonstrated 
and explained. Next, the measurements were conducted 
in three different trunk positions [4], i.e., sagittal stand-
ing (arms in the habitual position), sagittal standing flex-
ion (arms in a free stance), and extension (arms crossed 
on the shoulders, elbows up). The measurement started 
with placing the Medi Mouse at the C7 level. Next, the 
device was moved at a constant speed up to the S5 level 
[4]. All measurements were automatically recorded on a 
computer with Idiag M360 software to collect the data on 
(a) the current depth of thoracic and lumbar curvatures, 
(b) the proper physiological values of the aforementioned 
curvatures based on the values obtained for the able-bod-
ied populations similar in gender, age, BH and BM, (c) the 
differences between the current and proper physiological 
values of thoracic and lumbar curvatures, (d) the type of 
sagittal spinal curvature deviation, i.e., thoracic hyper/
hypo kyphosis, and lumbar hyper/hypo lordosis.

Statistical analysis
All statistical analyses were performed using Statistica 
13.3 software package. Distributions, means, and stand-
ard deviations (SD) of the anthropometric characteristics 
(BM, BH, BL, WC, HC), indices (BMI, BAI), and spinal 
curvatures (TK, LL, PV, spine length, pelvic inclination) 
were verified (Kolmogorov–Smirnov test). The percent-
age of thoracic hyperkyphosis, thoracic hypokyphosis, 
lumbar hyperlordosis, lumbar hypolordosis of sitting 
volleyball players was calculated. The correlations of the 
anthropometric characteristics (BM, BH, BL, WC, HC), 
indices (BMI, BAI), spinal curvatures (TK, LL, PV, spine 
length, pelvic inclination), and musculoskeletal pain were 
verified (Spearman’s correlation). Variability of the kTH, 
kLL, spine length, pelvic inclination in sagittal standing, 
sagittal standing extension, and sagittal standing flexion 
was verified (Wilcoxon signed-rank test). Correlations 
were evaluated as follows: trivial (0.0–0.09), small (0.10–
0.29), moderate (0.30–0.49), large (0.50–0.69), very large 

(0.70–0.89), nearly perfect (0.90–0.99), and perfect (1.0). 
The significance level was set at p < 0.05.

Results
The quantitative and qualitative assessment of the body 
posture of sitting volleyball players is presented in 
Tables  2 and 3. It was shown that lumbar hypolordosis 
was a predominant sagittal spinal curvature deviation 
(n = 15; 83%), whereas the values of lumbar lordosis angle 
were normal only in two players (n = 2;11%). Simultane-
ously, it was found that the prevalence and location of 
musculoskeletal pain based on NMQ-7 were the most 
frequent in the lower back and neck (50%).

Comparative analysis of the variability of the selected 
elements of the body posture during sagittal standing 
flexion and extension regarding sagittal standing showed 
statistically significant diversity in the values of thoracic 
kyphosis angle, pelvic inclination, and spine length. How-
ever, there was no statistically significant difference in the 
values of lumbar lordosis angle during sagittal standing 
flexion with a simultaneous significant change in pelvic 
inclination (66.9°)(Table 4).

The Spearman’s rank-order correlation between 
somatic parameters, markers, and qualities of the body 
posture is presented in Table 5. The results indicate mod-
erate to large statistically significant relationships, espe-
cially regarding the spine length and somatic variables. 
The statistical analysis demonstrated a tendency to the 
interpenetration of relationships between variables that 
characterize (a) body structure and (b) function of the 
spine and musculoskeletal pain. Furthermore, the statisti-
cal analysis showed some moderate to large relationship 
between NMQ-7 (shoulders) and SL (R = 0.6; p < 0.05) 
and between SL and BH (R = 0.9; p < 0.01). Simultane-
ously, BH showed a statistically significant relationship 
with NMQ-7 (shoulders) (R = 0.5; p < 0.05). Similar sta-
tistically significant correlations were found between pel-
vic inclination and NMQ-7 (shoulders and lower back) 
(R = 0.5; p < 0.05/R = 06; p < 0.01). Moreover, pelvic incli-
nation had a large negative correlation with trunk fat 
mass (R = − 0,6; p < 0.05) (Table 5).

Discussion
Among different types of motor impairments, lower 
limbs amputations seem to significantly impact body 
biomechanics [24, 25]. The aim of the study was to 
identify the impact of internal compensatory mecha-
nisms on selected aspects of body structure and func-
tion in elite sitting volleyball players. The main finding 
of this study was that both trunk fat mass and BAI 
are the main determinants of musculoskeletal pain as 
it was found that they significantly affected the spine 
length and pelvic inclination. The results of the present 
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study confirmed our initial hypothesis as they showed 
that the abovementioned components may induce 
internal compensations in the upper body segments 
in Para athletes, thus contributing to pain. Moreover, 
we found statistically significant relationships between 
the depth of thoracic kyphosis angle and (a) sagittal 
standing position and (b) sagittal standing flexion posi-
tion, which may suggest that the thoracic segment of 
the spine is characterized by high mobility as a result 

of internal compensation for decreased mobility in the 
lumbar segment.

Several reasons might explain the variability of the 
angles of thoracic kyphosis, lumbar lordosis, and pelvic 
inclination that were observed in the study. Firstly, in a 
balanced spine, thoracic kyphosis and lumbar lordosis 
are intrinsically related. Consequently, one curvature 
responds to the disturbance in the other, while the pelvic 
position strongly interacts with the spinal shape by con-
trolling the sagittal balance between the abovementioned 
curvatures [4]. As the study participants had lower limb 
impairment, the intrinsic spinal balance was disturbed. 
Hendershot et al. [10] indicated that changes in postural 
control and the area of spinal stability may be a result of 
the adaptations in functional tissues and/or neuromus-
cular response to repetitive exposure to abnormal gait 
and movement after lower limb/limbs amputations. Tak-
ing this into account, it can be postulated that in sitting 
volleyball players, the mechanism of internal compensa-
tion, activated by lower limb impairment, contributed to 
decreasing the angle of lumbar lordosis as the majority of 
the participants had lumbar hypolordosis. Moreover, the 
differences in thoracic kyphosis angle and mobility may 
also affect body biomechanics because of the lower limb 
impairment.

Sitting volleyball players were characterized by an 
excessive trunk fat mass and inappropriate BAI, which 

Table 2  Quantitative and qualitative characteristics of physiological spinal curvatures in the sagittal plane in three positions (sagittal 
standing, sagittal standing flexion, sagittal standing extension) in elite sitting volleyball players

kTH thoracic kyphosis angle, PV physiological values, kLL lumbar lordosis angle, SD standard deviation

Spinal curvatures measurements—sagittal 
plane

Mean ± SD (°) Values of the spinal deviations—sagittal 
plane

Number and 
percentage 
(%)

kTH-sagittal standing 36.9 ± 15.8 Thoracic hyperkyphosis 7 (39%)

PV of kTH 38.3 ± 16.6

Difference between kTH and PV 2.9 ± 3.9

kTH-sagittal standing flexion 60.4 ± 13.9 Thoracic hypokyphosis 7 (39%)

PV of kTH 59.6 ± 15.6

Difference between kTH and PV 3.8 ± 5.1

kTH-sagittal standing extension 32.6 ± 15.5 Norm 4 (22%)

PV of kTH 31.5 ± 16.5

Difference between kTH and PV 4.0 ± 4.7

kLL-sagittal standing 15.5 ± 10.6 Lumbar hyperlordosis 1 (6%)

PV of kLL 17.6 ± 13.0

Difference between kLL and PV 3.1 ± 4.0

kLL -sagittal standing flexion 22.3 ± 12.7 Lumbar hypolordosis 15 (83%)

PV of kLL 22.9 ± 16.0

Difference between kLL and PV 3.7 ± 5.1

kLL -sagittal standing extension 24.6 ± 14.1 Norm 2 (11%)

PV of kLL 25.3 ± 14.5

Difference between kLL and PV 3.9 ± 4.6

Table 3  The prevalence (%) and locations of musculoskeletal 
pain based on NMQ—7

a One participant did not answer because of bilateral amputation above the 
knees

Body parts (NMQ-7) Percentage 
(%)

Neck 50

Shoulders 22

Upper back 44

Elbows 17

Wrists 22

Low back 50

Hips/ties 22

Kneesa 28

Ankles/feeta 22
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were found to impact on decreasing pelvic inclina-
tion and spine length that simultaneously contributed 
to shoulders pain. Those results are consistent with the 
studies by Brandt et  al. [11], who indicated that lower 
limbs amputations may impact muscular changes in hips, 
and consequently affect pelvic inclination. In addition, 
the study conducted by Mirbagheri et  al. [26] and Zwi-
erzchowska et al. [15, 16] on the able-bodied population 
found that inappropriate BAI contributes to the deep-
ening of the lumbar lordosis and LBP. Interestingly, our 
study revealed that the angle of lumbar lordosis signifi-
cantly contributed to the prevalence of musculoskeletal 

pain. Given the above, there is a reason to believe that 
both individual characteristics of Para athletes and lum-
bar lordosis angle may be determining factors in induc-
ing musculoskeletal pain due to the body’s intrinsic 
compensation.

To the best of the authors’ knowledge, the present 
study is the first to analyze the impact of spine length and 
pelvic inclination on musculoskeletal pain in Para ath-
letes. Despite the large body of evidence on musculoskel-
etal complaints in able-bodied volleyball players, the data 
on sitting volleyball players are very limited. However, 
neck pain and LBP were indicated as the most common 

Table 4  Variability of selected elements of the body posture in the sagittal plane in three positions (sagittal standing, sagittal standing 
flexion, sagittal standing extension)

kLL lumbar lordosis angle, kTH thoracic kyphosis angle

The level of significance of the analyzed 
variable between sagittal standing and 
sagittal standing flexion

Sagittal 
standing 
flexion

Sagittal standing Sagittal 
standing 
extension

The level of significance of the analyzed 
variable between sagittal standing and 
sagittal standing extension

kTH

0.002 57.9 (13.7) 43.3 (17.4) 35.5 (9.9) 0.001

kLL

– 25.4 (11.4) 22.1 (12.2) 34.8 (12.3) 0.0002

Pelvic inclination

0.0002 66.9 (20.9) 8.3 (3.8) − 6.7 (17.4) 0.003

Spine length

0.02 603.6 (122.7) 561.9 (85.5) 526.3 (98.1) 0.004

Table 5  Qualities and indicators of the body build and posture and the prevalence of musculoskeletal pain (NMQ-7)—Spearman’s 
rank-order correlation

SP somatic parameters, FT trunk fat mass, ChS characteristics of the spine, SL spine length, SLe spine length in sagittal standing extension, kTh the angle of thoracic 
kyphosis, SSf sagittal standing flexion, SS sagittal standing, SSe sagittal standing extension, PI pelvic inclination, PIe pelvic inclination extension, kLL the angle of 
lumbar lordosis, LBP low back pain

NMQ-7 R-value 
NMQ-7 versus 
SP
(p < 0.01⁕⁕. 
p < 0.05⁕)

Somatic 
parameters (SP)

R-value 
SP versus ChS
(p < 0.01⁕⁕. 
p < 0.05⁕)

Characteristics of the spine (ChS) R-value 
ChS versus 
NMQ-7
(p < 0.01⁕⁕. 
p < 0.05⁕)

NMQ-7

× × BM (kg) 0.7** SL × ×
Shoulders 0.5* BH (cm) 0.9** SL 0.6* Shoulders

× SLe 0.5*

× × BAI (%) − 0.6** SL × ×
× × WC (cm) 0.6** SL × ×
× × HC (cm) 0.5** kTH in SSf × ×
Elbows 0.6** FT (%) − 0.6* PI × ×
× × × × PIe 0.5* Shoulders

0.6** LBP

× × × × Variability of kTH in SS versus SSe − 0.5* Wrists

− 0.5* Knees

× × × × kTH in SSe 0.5* Neck

× × × × kLL in SSf − 0.5* Sum of the NMQ-7
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problems in elite able-bodied volleyball players by several 
authors [27–29], which is consistent with the findings of 
our study. Furthermore, the aforementioned painful areas 
simultaneously showed strong relationships with skel-
etal parameters (thoracic kyphosis angle, pelvic inclina-
tion). According to Gaweł et al. [4], the angles of thoracic 
kyphosis and lumbar lordosis are determinants of LBP 
in sitting volleyball players. Moreover, Mizoguchi et  al. 
[30] found that decreased flexibility of the hip and shoul-
der flexors of the dominant limb may cause LBP. Taking 
this into account, decreased spine length and lumbar 
hypolordosis that were found in the Para athletes could 
cause LBP.

Limitations
Our study has several limitations that need to be 
acknowledged. The study participants were elite Para ath-
letes (the entire men’s and women’s Polish national team) 
and therefore the study groups were not large. However, 
it should be mentioned that there are few Para athletes at 
an elite level that could be included in the examinations. 
Furthermore, the studied group included Para athletes 
from one Paralympic sport. We examined more male 
sitting volleyball players, which makes any generaliza-
tion impossible. Thus, future studies should be extended 
to include more Para athletes from various Paralympic 
sports, of both genders, and different types of impair-
ment to enable generalization. Such studies could pro-
vide important data to help improve sports performance 
of Para athletes by minimizing the disadvantageous 
effects in body biomechanics [24, 25] because of intrinsic 
compensatory mechanisms and the proper prevention of 
musculoskeletal pain.

Conclusions

1.	 The current study provides novel insights into the 
monitoring of the training process of Para ath-
letes with lower limb impairment as it indicates the 
importance of internal compensatory mechanisms 
and provides important data on the prevalence and 
location of musculoskeletal pain.

2.	 Based on the main findings of this study, it can be 
concluded that trunk fat mass induces internal com-
pensatory mechanisms to maintain optimal pelvic 
inclination and sagittal balance of the spine. In this 
light, athletes and coaches are advised to include 
strength exercises for core, pelvic floor muscles, and 
gluteus muscles to improve biomechanics and body 
movement abilities and to decrease internal compen-
satory mechanisms of the body.

3.	 Moreover, as the level of pelvic mobility was found 
to be the factor that may determine musculoskeletal 

pain in Para athletes with lower limb impairment, 
athletes and coaches should consider performing 
exercises to improve pelvic girdle mobility.
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